
End-User Service Computing: Spreadsheets as
a Service Composition Tool

�Zeljko Obrenovi�c and Dragan Ga�sevi�c

Abstract—In this paper, we show how spreadsheets, an end-user development paradigm proven to be highly productive and simple to

learn and use, can be used for complex service compositions. We identify the requirements for spreadsheet-based service

composition and present our framework that implements these requirements. Our framework enables spreadsheets to send requests

and retrieve results from various local and remote services. We show how our tools support different composition patterns and how the

style of declarative dependencies of spreadsheets can facilitate service composition. We also discuss novel issues identified by using

the framework in several projects and education.

Index Terms—Online information services end-user development and service-oriented computing, information systems applications

office automation and spreadsheets, software engineering distribution, maintenance, and enhancement.

Ç

1 INTRODUCTION

END-USER development (EUD) is a very popular form of
interaction with computers. Millions of users daily create

their own solutions using spreadsheets, scripting, or high-
level visual programming languages. It is estimated that, in
2005, in the US alone, there were 55 million end-user
developers compared to 2.75 million professional software
developers [5] and the number is growing [17]. Scaffidi et al.
estimated that, in 2012, there will be 90 million computer end
users in American workplaces, with more than 55 million of
these using spreadsheets or databases [47].

Although their number is significant, end-user devel-
opers exploit only a very limited number of available
software services. EUD environments are not connected to
the world of service-oriented computing (SoC), which
promises to bring thousands of novel and easily reusable
software components [14], [28], [61]. Existing development
environments for service-oriented solutions, on the other
hand, are not appropriate for end users as they require
expertise of professional developers.

Joining EUD and SoC paradigms in a more synergic mix
can possibly enable millions of users to access numerous
software services and components. The long-term goal of
our work is exploring the potential of this mix, and our first
step is exploring how existing EUD environments, with a
well-established user base, can be adapted to support
advanced service compositions.

In this paper, we describe how spreadsheet environ-
ments can facilitate complex service compositions. We
show that, with only a few easy to learn extensions,

spreadsheets, a paradigm proven to be highly productive
and simple to learn and use, can be employed for complex
service compositions. Our results are based on the experi-
ences in implementation and usage of a framework, called
AMICO:CALC, which connects existing spreadsheet
environments with a wide variety of software services.
The framework defines a service coordination model where
service composition is achieved through spreadsheet for-
mulas, allowing users to combine diverse types of software
services, such as connecting a Google search Web service to
a local text-to-speech (TTS) service. For readers who would
like to further explore presented topics, we provide an open
source package that contains the source code of our
platform and software components used in the examples
presented in the text and the appendices.1

We first introduce a motivating scenario that illustrates
the type of EUD that we aim to support. We then present
some of the existing solutions and discuss their limitations.
After that, we identify the key requirements for spread-
sheet-based service composition. We describe the imple-
mentation of these requirements within our AMICO:CALC
framework for spreadsheet-based service composition. We
separately describe the details of the middleware part of
our framework and its integration into existing spreadsheet
programs. We show how our spreadsheet EUD framework
supports different service composition patterns and how
the style of declarative dependencies of spreadsheets can
facilitate service composition. We also discuss novel issues
identified by applying the framework. Our supplemental
materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSC.2008.16, include three appendices that pro-
vide more detail on the types of software services
supported by our environment, the adapters for service
data structures, and a description of the implementation of
the scenario introduction in Section 2 using our framework,
as well as a video.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008 229

. �Z. Obrenovi�c is with the User Centered Engineering Group, Department of
Industrial Design, Technische Universiteit Eindhoven (TU/e), Eindhoven,
The Netherlands. E-mail: z.obrenovic@tue.nl, obrenovic@acm.org.

. D. Ga�sevi�c is with the School of Computing and Information Systems,
Athabasca University, 1 University Drive, Athabasca, AB T9S 3A3,
Canada.
E-mail: dragang@athabascau.ca, dgasevic@sfu.ca, dgasevic@acm.org.

Manuscript received 25 Feb. 2008; revised 20 June 2008; accepted 8 Dec. 2008;
published online 17 Dec. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-02-0014.
Digital Object Identifier no. 10.1109/TSC.2008.16. 1. Available at http://amico.sourceforge.net/amico-calc.html.

1939-1374/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

2 MOTIVATING SCENARIO

In this section, we introduce the motivating scenario to
clarify our definitions of end users and end-user service
composition.2 We define end-user service composition as
the service composition performed by users who are not
professional developers, that is, users whose main job is
outside of computer science, in areas such as humanities,
engineering, medicine, or business. These users are usually
very sophisticated in the fields of their expertise, but they
have little time or interest in learning a programming
language or software engineering methodology, and they
use service composition tools as a means to accomplish
their main (professional or private) tasks. For a more
elaborate view on end users, we recommend [6] and [16].
Here, we give a sample scenario that illustrates the type of
end-user service composition that we are aiming at, with
Michelle as our end-user developer.

Michelle is a writer, preparing a book about Dutch
paintings. To collect necessary information, she analyzes
different sources about Dutch culture, most of them in the
Dutch language. However, being a beginner in Dutch, she
often has to translate phrases from and to English. She also
needs to find additional information about particular
concepts and facts. Instead of using several tools, such as
online dictionaries, definition books, and search engines,
she decides to compose a simple service that aggregates all
the services she needs.

She opens her spreadsheet program and, using a special
extension, connects to software services, including an online
translation service, Web search service, a spelling checker
service, and local services such as TTS engines for English
and Dutch, as well as a WordNet definition service, which
gives her definitions of terms and lists of synonyms. She
then composes a spreadsheet where, as a resulting function-
ality, she can type a word or phrase in Dutch and get various
results for it, including spelling corrections, translation(s) in
English, and additional information about the phrase, such
as definitions from WordNet or a list of Web pages that
contain data about the entered phrase. Although she could
use these services individually, the possibility to quickly
compose an aggregate service in a spreadsheet enables her
to get a simple unified user interface, adapted to her needs,
saving her time, so that she can focus on her main task. Yet,
she is able to compose those services on her own without
any additional assistance.

She also makes a version of the spreadsheet that is
connected to her Web browser so that she can select the
phrase in the Web page and, by using the browser toolbar,
send it to the spreadsheet without the need to copy the text
and switch between the windows. She adds a TTS service to
her spreadsheet so that she can hear the translated phrase
instead of switching windows to look at the result.

Finally, by changing just a few formulas, she makes a
third version of the spreadsheet, which is connected to a
short message service (SMS) service. When she sends an
SMS to her virtual phone number, the spreadsheet, which

she left running on her machine before leaving the house,
receives the message, translates the phrase, and sends her
back an SMS message with the translated text and
additional definitions. She uses this service when she is in
a library or museum.

3 SPREADSHEETS AND SOFTWARE SERVICES

Our example scenario illustrates the need for simple yet
powerful EUD environments and integrated use of various
software services. Here, we describe some existing end-user
service composition solutions and discuss their limitations
for supporting applications described in the example
scenario. We start with a brief discussion about spread-
sheets, SoC, and service composition and then describe
some spreadsheet service extensions.

3.1 Spreadsheets Basics

A spreadsheet is a computing application that displays a
rectangular table (or grid) of information, consisting of text
and numbers, where values sit in cells. Spreadsheets allow
defining the type of data for each cell (usually limited to
texts and numbers) and defining how different cells depend
on each other. The relationships between cells are defined
through formulas. Users can interactively change the data
and formulas and immediately see the effects of their
actions. By modifying the selected values, for example, the
users can see how all the other values change accordingly.
This enables studying of various what-if scenarios, which
makes spreadsheets a good rapid-prototyping environment.
At a more abstract level, it is often convenient to think of a
spreadsheet as a mathematical graph, where the nodes are
spreadsheet cells and the edges are references to other cells
specified in formulas, which is often called the dependency
graph of the spreadsheet. References between cells can take
advantage of spatial concepts such as cell relative and
absolute positions, as well as named locations, to make the
spreadsheet formulas easier to understand and manage.

Many people find it easier to perform calculations in
spreadsheets than to write the equivalent sequential
program [11], [49]. One of the main properties of spread-
sheets is its usage of human spatial perception and
reasoning: spreadsheets are designed to perform general compu-
tation tasks using spatial relationships rather than time as the
primary organizing principle. The ability to define a set of cells
with a spatial relation to one another, exploiting users’
natural spatial perception and reasoning, is one of the key
properties for the success and wide use of spreadsheets.
Many of the concepts common to sequential programming
models have analogs in the spreadsheet world. For
example, the sequential model of the indexed loop is
usually represented as a table of cells with similar formulas
(normally differing only in which cells they reference).

There are many commercially available spreadsheet
environments. The spreadsheet paradigm, however, in-
cludes not only commercial spreadsheet systems such as
MS Excel and OppenOffice.org CALC but also a number of
research languages that extend the paradigm with features
such as gestural formula specification [9], [33], graphical
types [57], visual matrix manipulation [3], [55], high-quality

230 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

2. Appendix C, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TSC.2008.16, shows
the implementation of this scenario with our solution.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

visualizations of complex data [12], and specification of
graphical user interfaces (GUIs) [35]. Most of the current
research on spreadsheets is focused on reducing the errors
introduced by users [7], [19], [53].

3.2 Service-Oriented Computing and Service
Composition

Service computing provides higher level abstractions
facilitating the implementation and configuration of soft-
ware applications in a manner that improves productivity
and application quality and enables organizing applica-
tions for large-scale open environments [28]. In SoC,
services are usually defined as autonomous platform-
independent computational elements that can be de-
scribed, published, discovered, orchestrated, and pro-
grammed using standard protocols for the purpose of
building networks of collaborating applications distribu-
ted within and across organizational boundaries. Web
services are currently the most promising technology
based on the idea of SoC [60]. SoC is, however, not
limited to Web services but embodies key principles such
as loose coupling, implementation neutrality, flexible
configurability, persistence, granularity, and teams [28].

SoC involves various service layers, functionality, and
roles [43]. Basic services, their descriptions, and basic
operations (i.e., publication, discovery, selection, and bind-
ing) that produce or utilize such descriptions constitute the
foundation of service-oriented architectures. The higher
layers provide the additional support required for service
composition and service management.

The need to aggregate or combine small services into
larger services is the core in service-oriented architectures.
The service composition is a process of aggregating multiple
services into a single composite service. In many cases, a
single service will act as a front end to many small services.
There are a variety of methods for combining services,
including simple pipes and filters, which direct the output
of one service into the input of another service, and more
complex choreographies and orchestrations, which utilize a
high-level declarative and scripting language to control the
sequence and flow of service execution [42]. Web Services
Choreography Description Language (WS-CDL) is an
example of a complex choreography language.

Most of the existing service compositions solutions are
aimed for supporting professional developers, with solu-
tions such as automated service composition, model-driven
service composition [41], Semantic-Web-enabled composi-
tion [45], QoS-aware service composition [34], and business-
driven automated composition [59].

Currently, end users appear mostly as the consumers of
a final service composition, and they cannot influence the
service composition in a similar manner as they build
custom applications in end-user environments. Most exist-
ing service composition solutions do not enable end users to
fully support their business process without needing to
provide all the context information for automatic algo-
rithms to generate a service composition for them.

3.3 Spreadsheets and Services

There are several solutions that provide a limited relation of
SoC and spreadsheets. Most of them introduce predefined

functions that access online data about financial and similar
services, but some of them introduce functions that enable
the usage of other primarily Web services. In this section,
we describe Web service extensions of commercial spread-
sheets, online spreadsheets, and some task-specific spread-
sheet service extensions.

3.3.1 Using Web Services within Spreadsheets

Commercially available spreadsheet environments have
mechanisms to extend their functionality, enabling devel-
opers to build custom functions and extensions, some of
which may access Web services. MS Excel’s Web Service
extension [32], for example, enables end users to create a
code wrapper for a Web service and use functions from this
wrapper within the spreadsheets. In this case, end users call
a Web service through spreadsheet macrolanguage and
define functions that return the results of a service. This
approach, however, requires manual coding of every service
connection and is limited to Web services. StrikeIron SOA
Express for Excel [51] (previously known as OnDemand
Web Services for Excel) provides a similar solution with a
simpler drag-and-drop interface for the connection of Web
service parameters and spreadsheet fields.

The basic idea behind these extensions is in making it
possible to have “live” cells within spreadsheets, i.e., the
cells that are updated with data taken from Web services,
and they are less suitable for service composition.

3.3.2 Online Spreadsheets

Rich application development abilities of Web libraries
enabled the creation of fully functional online spread-
sheets.3 Online spreadsheets allow users to create a
spreadsheet and have multiple persons edit and share it
on the Web. NumSum [36], iRows [29], Zoho [62],
EditGrid [15], and Simple Spreadsheets [50] are examples
of such infrastructures. Some of these solutions enable
developers to remotely access and modify data within
spreadsheets.4 For example, Zoho introduces several APIs
that enable developers to access spreadsheet data through
REST and XML-RPC-based interfaces. EditGrid, on the
other hand, enables access to spreadsheets through REST-
and SOAP-based APIs and instantiation of EditGrid’s
spreadsheets as JavaScript objects. There are also several
open source online spreadsheet infrastructures.

Within these examples, however, the emphasis of service
extensions is on using spreadsheets as a data source by other
applications and not on using spreadsheets as a service
composition tool. Limited forms of service composition
within spreadsheets can be found in more advanced online
spreadsheets such as Google spreadsheets [25]. For this
purpose, Google spreadsheets introduce two new functions:
GoogleFinance and GoogleLookup. GoogleFinance enables
end users to use various financial services such as getting
stock prices and currency exchange rates. GoogleLookup
provides results of a search service about “people, places,
and things.” Google Web spreadsheets, however, do not
directly support access to other services, i.e., they enable the
usage of a limited number of predefined financial and Web
search services. Moreover, these solutions cannot be used
for work with other types of services, while we aim at
supporting service composition with various types of

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 231

3. http://en.wikipedia.org/wiki/List_of_online_spreadsheets.
4. See www.programmableweb.com/apitag/spreadsheet for details.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

service interfaces and technologies (see Section 4.1 and
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSC.2008.16, for details). Functionality similar to
Google spreadsheets is provided by wikiCalc [56]. In
addition to standard spreadsheet functions, users can use
the wkcHTTP() function, which gives wikiCalc access to
external Web services, accessing a specific URL on the
Internet using the HTTP protocol. EditGrid and iRows also
support live stock and currency data functions but not
access to other services.

3.3.3 Task-Specific Spreadsheet Service Extensions

Kandogan et al. developed A1, a spreadsheet-based
environment with a task-specific system-administration
language [31]. A1 extends the spreadsheet paradigm by
introducing objects in cells so that cells can contain an
arbitrary Java object. In this way, A1 can access many of the
system services using Java service libraries. System admin-
istrators can use this system to access remote systems,
gather status data, and orchestrate control of disparate
systems in a uniform way. A1, however, is optimized for
system administrators and requires knowledge of the Java
programming language, i.e., it is not suitable for most of the
end users.

To support some of the tasks related to online forms,
Fujima et al. developed a C3Sheets prototype [22], enabling
end users to create custom interfaces on top of existing Web
applications and services using a spreadsheet-like tool. Their
tool makes possible clipping of input and result elements
from existing services to form cells on a spreadsheet,
connecting these cells using formulas, and cloning cells, so
that multiple requests can be handled side by side. The tool,
however, is not a fully functional spreadsheet environment,
and it is built to support work with standard HTML pages but
not for other services such as SOAP Web services.

4 REQUIREMENTS FOR SPREADSHEET-BASED

SERVICE COMPOSITION

Spreadsheets usually provide fixed functionality with
limited service extensions and do not include support for
diverse services and service compositions needed for
implementation of the functionality described in our
example scenario. In this section, we identify basic require-
ments for going beyond existing SoC and spreadsheet
solutions, providing a more synergic mix of these two
paradigms, extending the spreadsheet paradigm into a
service coordination language.

Our main goal is to enable spreadsheet-based service
composition, where coordination among diverse services is
achieved by end users through spreadsheet formulas. We
want, therefore, to extend spreadsheets into a fully
functional language for service coordination. To state our
goal in a more structured way, we followed a constructive
approach to the definition of coordination languages
described in [13], which consists of identifying the follow-
ing components:

1. Coordination entities. These are the entity types that
are coordinated. These could be Web services,
Unix-like processes, threads, concurrent objects,
and even users.

2. Coordination media. These are the media making
communication among the entities possible. More-
over, a coordination medium can serve to aggregate
entities that should be manipulated as a whole.
Examples are classic media such as semaphores,
monitors, or channels or more complex media such
as tuple spaces, blackboards, or pipelines.

3. Coordination laws. A coordination model should
dictate a number of laws to describe how entities
coordinate themselves through the given coordina-
tion media and using a number of coordination
primitives. Examples are laws that enact either
synchronous or asynchronous behaviors or exploit
explicit or implicit naming schemes for coordination
entities.

4.1 Requirements for Coordination Entities

Our motivating scenario illustrates the need for diverse
software services, and we want to enable end users to access
a wide variety of software services. Our goal is not only to
support one type of coordination entities, such as Web
services, but any remote or local service (such as speech
input or output) through a diverse set of communication
interfaces such as XML-RPC, OpenSound Control, or simple
TCP and UDP interfaces (see Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2008.16, for de-
tails). We are therefore looking at a more generic definition
of a service as a self-contained functional unit in which
service consumers interact with the service through a well-
defined interface. The solutions should be open to a wide
range of such service interfaces.

4.2 Requirement for Coordination Media

The coordination media should serve as glue between
diverse software service interfaces and spreadsheets, being
able to do the following:

. Abstract the difference among service interfaces. Finding
an appropriate abstraction is crucial if we want to
support a broad interconnectivity of services and
support our requirements for the work with diverse
entities.

. Provide simple data structures that are easy to map to
spreadsheet cells. Our goal is to make spreadsheet
extensions simple so that existing environments can
be more easily adapted. When the coordination
media abstracts and simplifies data structures,
integrating services into existing environments is
generally simpler.

Coordination media should facilitate solving one of the
key problems in enabling end users to use heterogeneous
software services, that is, working with significantly
different data abstractions that software services and
spreadsheets use. Web services, for example, operate with
complex hierarchical XML data structures, and end users
are usually not able to easily understand and use such
structures.

4.3 Requirements for Coordination Laws

The composition primitives used in spreadsheet formulas
should be complex enough to enable supporting the

232 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

functions described in our motivating scenario, including
the following:

. Providing flexible and generic compositions primitives.
That is, we do not limit composition to a
particular task.

. Supporting basic communication and workflow patterns
such as sequence, parallel split, exclusive choice, simple
merge, and synchronization [58]. With these patterns, it
is possible to create various complex service compo-
sition graphs. Support for more complex patterns
such as structured synchronizing merge or blocking
partial join is optional, as, in our experiences, these
complex patterns are hard to understand and
manage by end users.

. Supporting mappings between spreadsheet spatial rela-
tionships and service data with temporal dimensions. In
other words, we want to avoid the need for users to
write complex adapters for services and to directly
map spreadsheet services with service parameters
and results.

Our goal, however, is not to create a complex service-
oriented architecture but to enable users to directly combine
software services through simple spreadsheet formulas. The
additional requirement for our coordination laws is that they
should be understandable to end users and easy to integrate within
existing spreadsheet environments. Although the dividing line
between end users and professional developers seems to have
become blurred, we wish to emphasize that our notion of end
users is quite strict. We assume that an end user should not be
able to do any scripting beyond simple formulas and an
occasional conditional expression by using the if-then
construct. We also do not want to propose new interaction
techniques, as building new development environments is a
tedious and time-consuming task and it is hard to predict how
users will accept it. Adapting existing spreadsheet environ-
ments enables users to build on previous experience and
learn faster and more efficiently how to compose services.

5 A FRAMEWORK FOR SPREADSHEET-BASED

SERVICE COMPOSITION

By following the requirements defined in Section 4, we have
developed AMICO:CALC, a framework for end-user spread-
sheet-based service composition. Our framework is an
extension of the Adaptable Multi-Interface COmmunicator
(AMICO) middleware platform,5 which facilitates adapta-
tion, abstraction, and mediation of diverse software services
[37]. The AMICO:CALC framework uses a simpler version of
AMICO, with the addition of spreadsheet add-ons, connect-
ing existing spreadsheet environments with services and
extending them with service composition functions.

AMICO:CALC, as a whole, facilitates the loosely coupled
integration of heterogeneous software services within
spreadsheet environments while providing a uniform and
simple interface to end users. It consists of two main parts
(Fig. 1):

. Middleware for heterogeneous services, with support for
diverse service interfaces. The middleware supports
our coordination entity and coordination media
requirements.

. Spreadsheet extensions for service composition, which
introduces several novel functions for service com-
position through spreadsheet formulas. We have
introduced only a few simple functions and imple-
mented defined functions within the OpenOffice.org
CALC spreadsheet environment. The add-on sup-
ports our coordination law requirements.

The middleware maintains a list of variables (see Section 6
for details) which encapsulate data structures used by
services, and our spreadsheet extensions map these variables
to spreadsheet formulas (see Section 7 for details). Due to the
many limitations of the spreadsheet extension mechanism
and keeping in mind that our middleware uses components
implemented in diverse programming languages, we were
not able to embed the full functionality of the middleware
within the spreadsheets. Therefore, spreadsheet and mid-
dleware environments are connected in a loosely coupled
way, each running in a separate process and communicating
through TCP and UDP connections. This approach makes
spreadsheet extensions simpler and easier to implement as
they only read and write variables, while our middleware
maps variables to service interfaces. One of the consequences
of this approach is that service data structures, represented in
variables, are not immediately visible within spreadsheets,
i.e., it is necessary to write formulas to get variables within
the spreadsheets. We do, however, provide a mechanism
that enable a user to import all variables with one function or
copy them from the middleware control panel and put them
on a different page or tab of the spreadsheet, thus making
available services more exposed to the user.

In comparison with the existing solutions, AMICO:CALC
has a wider scope than most of existing solutions, as it can
work with diverse types of software services and it does not
only support data-aggregation but also integration of
additional services such as interaction facilities involving
speech recognition and TTS output. Table 1 gives a
comparison of AMICO:CALC to some of the existing
solutions in terms of their flexibility, types of services
supported, and main limitations.

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 233

5. http://amico.sourceforge.net.

Fig. 1. A framework for end-user spreadsheet-based service composi-
tion. End users use standard spreadsheet environments (with a specific
add-on) to access the middleware for heterogeneous software services.
Our AMICO middleware introduces simple data structures and data
adapters for diverse service interfaces. The framework also offers the
tools for service selection and debugging.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

In the following two sections, we describe details of
AMICO:CALC by describing first its support for coordina-
tion entities and media (Section 6) and then its support for
coordination laws (Section 7) as specified in the require-
ments in Section 4.

6 COORDINATION ENTITIES AND MEDIA: ADAPTING

AMICO MIDDLEWARE

As a middleware for our solutions, we have adapted the

service brokering infrastructure, called AMICO. Adaptation

included simplifying the service adapters and the addition

of tools that can make easier work with services for end

users. AMICO is a generic platform, realized as a Java

application, used to support rapid prototyping with

heterogeneous software services [37]. The adaptation of

AMICO, included in AMICO:CALC, is a complex toolset,

which includes the following:

. AMICO service brokering infrastructure (coordina-
tion media). This includes a shared data space for
simple data structures and a notification service.

. Set of AMICO service interfaces (interfaces toward
heterogeneous coordination entities). This enables

the use of services with diverse interfaces, support-
ing our requirement for the integration of a wide
variety of software services.

. AMICO service data adapters. These map hetero-
geneous service data structures to a shared data
space and linearize complex data structures to
simpler data structures suitable for use within
spreadsheets (see Appendix B, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2008.16,
for details). In this way, we support our coordination
media requirements for abstracting the difference
among service interfaces and providing simple data
structures.

. AMICO tools for service selection and debugging.
These facilitate end users’ work with heterogeneous
services.

In the following sections, we briefly describe each of

these elements.

6.1 Coordination Media: AMICO Service Brokering
Infrastructure

AMICO is a blackboard type of coordination media, based

on the publish-subscribe design pattern [23], which is well

234 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

TABLE 1
Comparison of Some of the Existing Spreadsheet Service Solutions with AMICO:CALC

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

suited for the integration of loosely coupled components,
and often used in context-aware and collaborative comput-
ing [54]. In this model, a publisher updates a shared data
repository without being concerned with whether any
subscribers are listening for updates. In such a loosely
coupled model, components can run on different machines
in a distributed environment.

As a main data abstraction, AMICO provides a set of
untyped variables (named slots) similar to untyped data
structures used in end-user spreadsheet environments.
Applications communicate by exchanging events through
a shared data repository consisting of these variables. An
application can update the variables and register for
notifications about changes of any variable. The simplicity
of data structures is the key property of AMICO that makes
it easy for integration with spreadsheets.

In its basic ideas, AMICO is similar to other loosely
coupled and notification architectures such as Elvin [20],
Lotus PlaceHolder, which is based on the Notification
Service Transfer Protocol [44], and tuplespace systems, such
as Linda [24], Stanford EventHeap [30], and JavaSpaces [18].

6.2 Supporting Diverse Coordination Entities:
AMICO Service Interfaces

One of the key differences between AMICO and other
loosely coupled services is support for more than one
integration interface. AMICO provides a unified view on
different service interfaces and interconnects them in the
common space. We support several widely used and
standard communication protocols that various software
services use, such as low-level TCP and UDP interfaces,
Bluetooth, and many higher level interfaces such as HTTP
GET/POST, XML-RPC, OSC, SOAP, and many application-
specific interfaces.

AMICO is extensible, and it is possible to add new
communication interfaces. This ability allows using not
only Web services via the AMICO SOAP interface but also
any local or remote software service or process that opens
any of the supported open communication interfaces.

Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSC.2008.16, elaborate on used service interfaces
and types of services that can be used through these
interfaces.

6.3 Unifying and Simplifying Service Data
Structures: AMICO Service Data Adapters

AMICO service data adapters map AMICO variables to the
arguments of service calls and results of services and define
the conditions when the service will be called.

For each of the communication interfaces, it is possible to
define a service adapter (see Appendix B, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2008.16, for de-
tails on these adapters). An adapter defines the mapping
between variables and service calls and between variables
and results of services.

If the result is a complex XML structure, which is often
the case with SOAP services, it is possible to simplify this
data structure by providing XPath expressions to extract a
part of the XML and, optionally, an XSLT transformation
script if a more complex transformation is required. The

basic idea of service adapters is to linearize service data
structures to a set of variables, which can be easily mapped
to spreadsheet cells and formulas, so that an end user does
not have to deal with complex hierarchical structures. When
complex data structures are used, more than one variable is
usually derived. For example, if the result of a service is a
list, such as a list of links to Websites from the Google
search service, then we derive several variables, each for
one element of the list. With very complex structures, it is
sometimes better to define several adapters, each using just
part of the data structures to variables, mapping only the
elements that end users need to for a particular task.

6.4 AMICO Tools for Service Selection and
Debugging

AMICO facilitates a loosely coupled connection of services,
where each service runs as an independent process on the
same or a remote machine. In order to make the launching
of services and service adapters easier for end users, we
provide several tools.

The control panel of our middleware, for example,
enables an end user to select a service from a list and
create a group of services (Fig. 2). The end user can then
save the group and select it next time to automatically run
all the processes. We also provide an interface where all
currently run services can export the variables they use and
the end user can read the description of these variables and
change their values in order to check how they affect other
variables. The variables shown in a window are automati-
cally generated from a service adapter or updates by
services, which makes developers’ work of defining service
adapters easier, as they do not have to provide lots of
additional documentation to make their service adapter
understandable to end users. This tool is also useful for
debugging, as it allows for the monitoring of all the
variables that are exchanged among services.

One of the limitations of the current implementation of
AMICO:CALC is a lack of tools that can enable end users to
define service adapter mapping without any help from
developers. However, the focus of this paper is on using
services within the spreadsheets when these adapters are

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 235

Fig. 2. Control panel of our middleware that end users can use to start

services and check and change service variables.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

defined. Building intuitive service adapter configuration
tools is, however, a part of our ongoing work.

7 COORDINATING SERVICES THROUGH

SPREADSHEET FORMULAS

We have implemented the spreadsheet extension for

OpenOffice.org CALC by using OpenOffice.org SDK 2.2.0

(the add-on can be used for OpenOffice.org 2.0.4 or newer).

As our middleware introduces simple data structures and

hides and abstracts most of the complexity of service

interfaces and data structures, the implementation of the

spreadsheet functions was straightforward and did not

require a lot of code.6 We also provide a less functional

Microsoft Excel add-in, which we do not discuss in this

paper, as it is still a work in progress.
We introduced four new functions as a part of our

spreadsheet extension (Table 2), in order to support our

requirement for coordinating diverse services through

spreadsheet formulas (see Section 4). After users select

and start the services within the middleware, they can then

use these four functions to make various service composi-

tions. Due to the limited space, in this section, we show

simple examples, while Appendix C, which can be found

on the Computer Society Digital Library at http://

doi.ieeecomputersociety.org/10.1109/TSC.2008.16, illus-

trates how these functions have been used to implement

the motivating scenario described in Section 2, where we

have used several Web services in combination with TTS,

Wordnet, and other heterogeneous services and integrated

these services with a Web browser and an SMS.7

In the next two sections, we describe how these

functions, in combination with the built-in spreadsheet

functionality, support our requirements for coordination

laws defined in Section 4.3.

7.1 Supporting Basic Composition Patterns

As basic primitives for service composition in spreadsheets,

we introduce two simple functions for asynchronous

reading and updating of AMICO variables: AMICO_WRITE

and AMICO_READ.
The introduced functions directly reflect the basic interface

of the AMICO infrastructure, that is, updating variables and

receiving notifications about variable updates. For example,

the expressionAMICO_WRITE(“spelling”;B10) calls the

Google spelling checker service (every time cell B10 is

updated) and the expression AMICO_READ(“spelling-

suggestion”) receives a value when the spelling service

finishes. These two functions also resemble the basic

spreadsheet cells’ update-refresh mechanism.
With these two functions, it is possible to support basic

communication patterns (and their combinations), includ-

ing one-to-one, one-to-many, and many-to-one bindings.

Fig. 3 illustrates how these functions can be used to support

workflow patterns sequence, parallel split, exclusive choice, and

multimerge. AMICO_WRITE_DELAYED, described in the

following section, partially enables synchronization and
synchronization merge workflow patterns.

AMICO_WRITE is also the main mechanism for a
spreadsheet to export its results, as variables updated by
AMICO_WRITE can be used by any other services connected
to AMICO.

7.2 Mapping Spreadsheet Spatial Relationships to
Service Data and Temporal Dimensions

The AMICO_READ and AMICO_WRITE functions can be used
in any of the spreadsheet formulas in any of the cells. In this
way, an end user can spatially organize the input and output
of services, building a more intuitive interface where these
two functions provide an effective means to map service
spatial relations to service data structures. AMICO_ WRITE

can also receive a range of cells as arguments, enabling the
mapping of multiple spreadsheet cells to multiple updates
of AMICO variables by using only one function.

236 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

6. Available at http://amico.sourceforge.net/.
7. See also http://www.idemployee.id.tue.nl/z.obrenovic/media/

amico-calc-demo.avi.

TABLE 2
Spreadsheet Extensions with Functions that Address

Requirements for the Coordination Laws Defined in Section 4.3

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

Two additional functions, AMICO_WRITE_DELAYED and
AMICO_READ_LOOP, provide means for mapping spread-
sheet spatial dimensions to service temporal dimensions.
AMICO_WRITE_DELAYED receives a range of cells and
transforms the spatial ordering of cells into the sequential time

flow of updates of AMICO variables. Fig. 4 illustrates how
this function can be used with a MIDI player service to

create a simple melody. The MIDI player is a simple service
that can be controlled through a TCP interface, enabling
other services to play a musical note if they update the

AMICO variable “midi-note” with the value of the note, its
velocity (intensity), and its duration.

AMICO_WRITE_DELAYED also solves some of the
problems concerning temporal management. For example,
in the implementation of our example scenario (Appendix C,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSC.2008.16), we used an online text translation service in
combination with two local TTS services. When a user
requests a translation from Dutch to English, for example,
we send the text to the translation service and to the Dutch
TTS service, while the result of the translation service is sent to
the English TTS engine. Because of the short delay, both TTS
services produced the speech almost at the same time.
Another related problem appears when AMICO_WRITE uses
formulas depending on more than one cell. In this case, the
function is called every time any depended cell is updated.
This is problematic if the function has side effects such as
sending SMS messages where it is desired to send the
message only when all the variables that define the message
are ready. The AMICO_WRITE_DELAYED function delays the
update of the variables for a given number of seconds, solving
the first problem. IfAMICO_WRITE_DELAYED is called before
the delay has passed, the timer is reset, the old value is
ignored, and the new value will be sent, which solves the
second problem; that is, the function “waits” until all relevant
cells are updated and then sends the message. In this way, the
function supports synchronization and synchronization merge
workflow patterns.

AMICO_READ_LOOP introduces essentially the opposite
effect to AMICO_WRITE_DELAYED: It transfers the sequen-
tial updates of one AMICO variable to spatial updates of
spreadsheet cells. Fig. 5 illustrates how this function works
on the example of the Google Maps coordinate selector. The
Google Maps coordinate selector is an AJAX-based applica-
tion that connects to AMICO through HTTP interfaces and
updates the AMICO variables “longitude” and “latitude”

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 237

Fig. 4. Illustration of the work of AMICO_WRITE_DELAYED. AMICO_
WRITE_DELAYED sends notes to the MIDI service, in this case, a
variation of the Jingle Bells song. AMICO_WRITE_DELAYED receives the
list of variables that should be updated (column D), the list of values that
will be used to update the variables (column E), and timing as a list of
pauses between updates (column F).

Fig. 3. Simplified spreadsheet formulas for supporting various workflow

patterns with AMICO_READ and AMICO_WRITE functions.

Fig. 5. An illustration of the work of the AMICO_READ_LOOP functions.

This example maps a selection of coordinates from Google Maps to the

updates of spreadsheet cells, and these updates are used to calculate

the distance between the points.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

with the geographic coordinates of the location where the
end user clicks on the map (also adding a marker on the
map). AMICO_READ_LOOP, in this example, maps every
update of variables to sequential updates of columns A and
B, starting with row 4 (i.e., the first update will update
cells A4 and B4, the second will update A5 and B5, and so
on). Other spatial spreadsheet functions such as SUM can
then be used to calculate other parameters such as the
distance between the selected coordinates.

8 DISCUSSION

AMICO:CALC supports all requirements for spreadsheet-
based software service composition, as specified in Section 4
and explained in Sections 5, 6, and 7. It enables the use of
very diverse software services. The AMICO:CALC middle-
ware introduces service interfaces that address this diver-
sity and provides simple data structures that are easy to
map to data structures used in spreadsheets. The intro-
duced spreadsheet functions can support many complex
service composition patterns and the mapping between
spreadsheet spatial dimensions to service data structures
and temporal dimensions. Our implementation of the
OpenOffice.org CALC extensions is fully functional and
illustrates how existing environments can be adapted to
support service composition.

We have applied AMICO:CALC in two European
projects, Passepartout8 and K-Space,9 where we used it as
a tool for merging software components and services from
various partners in several integrated demonstrations. We
have also introduced AMICO:CALC in the course of
Intelligent Multimedia Technologies at the Free University
in Amsterdam, where students could prototype various
interactive solutions with it. The course was realized with
32 undergraduate students (who are in their third or fourth
year) from various departments, including cognitive sys-
tems, information systems, computer sciences, and artificial
intelligence, and several exchange students [38]. We are
currently using our framework in the Department of
Industrial Design, Technische Universiteit Eindhoven, with
designers and students using it in their projects, as well as
in the undergraduate course on Sketching Interactive
Systems. The main motivation for using AMICO:CALC in
education was to enable students without programming
experience to build complex interactive systems, as well as
to enable quick “sketching” of various interactive systems
without intensive programming.

In this section, we discuss some lessons learned,
including novel user issues, performance issues, implica-
tions for spreadsheet designers, the potential for new
applications, and possibilities to use other middlewares
and EUD environments, in relation with conventional
service composition solutions.

8.1 User Issues

The introduced spreadsheet functions proved to be easy
to understand for most end users and powerful enough
to enable usage of most of the complex services.

AMICO:CALC proved to be a very good tool for rapid
prototyping as it allowed easy and real-time service
compositions and demonstrations by inexperienced devel-
opers and end users. It is important to note that, although
we clearly identified some of the usability problems such
as the complicated installation procedure of middleware
and the lack of tools that can facilitate end users to
discover and install AMICO services (see Section 6.4 for
details), our primary goal was to identify novel issues
and possibilities. Therefore, our decision was to verify the
feasibility of the proposed idea in real-world situations,
rather than to test its usability in controlled conditions
[26]. However, further usability testing is necessary if the
solution is to be turned into the final (commercial)
product.

Based on our experiences from the projects and the
feedback from the students, we discuss some of the
observed differences of our solution in comparison to
ordinary spreadsheet functions.

8.1.1 Feedback about the State of Services

Existing spreadsheet functions have a relatively short
response time, and if the number of formulas is not
excessive, the response is usually perceived as immediate.
In case of the usage of software services, however, the
response time can be significantly longer, sometimes a few
seconds, due to various factors such as network latency or
performance overhead. If the services are chained (e.g.,
when we are sending results of a translation service to a
TTS service), the response time for final results is even
longer. For this kind of service, we found that it is very
important to provide feedback about the state of the service.
After the first tests with end users, we decided to change all
AMICO service adapters so that they also update variables
that describe the current state of the services (e.g., ready,
working, and finished) and, thus, users can use this variable
to make the state of the service visible.

The feedback about the service state also proved to be
important in debugging. Without the feedback about the
service state, especially within the complex spreadsheets, it
is hard to see if the service is down or if there are some
problems with the formulas.

8.1.2 Names of Variables

Although the introduced spreadsheet functions are simple,
the names of variables used in these functions play a
significant role in user understanding and usage of
services. Our initial naming of variables was not intuitive
enough for the end users in our experiment. For example,
instead of calling a TTS service with the function
AMICO_WRITE(“message-en”; < text>), the end users
suggested that the function AMICO_WRITE(“say-it-in-

english”; < text>) is much more intuitive.
It is therefore very important to provide a careful

mapping between service adapters and variable names
and to involve end users in this process. Automatically
generating service adapters, from WSDL descriptions, for
example, usually produces names that are not intuitive for
end users. We are also working on tools that can enable end
users to define or change the names of the variables and
define aliases.

238 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

8. http://www.passepartout-project.org/.
9. http://kspace.qmul.net/.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

8.1.3 Using Online Services

While using online services, we experienced problems
related to the registration and payment.

Registration. Many of the online services, such as Google,
Yahoo, or Flickr Web services, required registration for
every end user. These services use diverse methods for
registration and sometimes require payments, having
different business models (e.g., free for personal use, paying
per request, or paying for a limited period). One of the open
issues is how to simplify and unify the registration
procedure for end users, that is, how to enable users to
easily manage a huge number of passwords and keys that
some of the services require and, yet, preserve the security
and privacy of end users and their private data. A
promising solution to this problem could be user-centered
identity management solutions such as OpenID [40], as well
as tools such as Sxipper [52].

Paying for services. A related issue concerns the provision
of feedback about the price (money to be sent) for pay
services. The end user’s trust in the system and transpar-
ency of service calls plays an important role when the
services are not free. Some users provided concerns about
using services that they had to pay per request and
indicated that they would like to have some kind of
feedback about the current credit and the possibility to
define a limit. Users do not feel comfortable when every
spreadsheet update charges their credit card even for a
small amount. An error in code can also be very expensive.
For example, the Esendex SMS service charges about
0.10 per message. In one of the examples, we used this
service within a complex spreadsheet, and we introduced
an error causing an infinite refresh loop. In a few seconds,
before we noticed the error, dozens of messages were sent.
Left unnoticed, the spreadsheet could send thousands of
messages in less than an hour, costing us hundreds of
dollars and leaving the receiver of the messages busy with
deleting the messages. This problem also influenced the
design of service adapters and the AMICO service broker-
ing infrastructure. To avoid calling the services every time
service variables are updated, the adapters can define if
they should be called when the variable is updated but
not changed from the previous update. Such simple
mechanisms may significantly reduce the number of service
calls and response time, while avoiding unnecessary
payments for services.

8.2 Performance Issues

Service composition using our framework is affected by the
time overhead of the spreadsheet environment and AMICO
middleware.

The spreadsheet environment introduces a delay that is a
consequence of calculating formulas and cell dependencies,
as well as a communication overhead between the AMICO
middleware and the spreadsheet extension. Spreadsheets
attempt to automatically update cells when the cells on
which they depend have been changed, but it is hard to
predict the exact order and time of cell value propagations,
which limits the dynamic effect and temporal resolution of
service composition.

The AMICO middleware, on the other hand, uses service
adapters that do not support real-time interaction. AMICO

is therefore not suited for application with hard real-time
requirements, as it makes no guarantees regarding the
speed with which data will be transmitted to the recipients.

However, the delay introduced by the middleware
processing and service adapters is usually of order of
magnitude of 10 ms and was acceptable for most of our
interactive applications [1]. To improve scalability, several
instances of AMICO can be distributed in the network and
interconnected.

8.3 Implications for Spreadsheet Designers

We experienced some problems due to the optimization
techniques that spreadsheets use. Spreadsheets normally
use functions without side effects; that is, the only result of
spreadsheet functions is the value they return based on the
input from other cells. Our functions, however, produce
many side effects, such as calling the TTS engine or receive
results from outside processes such as receiving the results
of the Web service. Spreadsheet optimization techniques,
however, do not account for such side effects. Open-
Office.org CALC, for example, sometimes does not evaluate
formulas that do not affect the visible space. Microsoft Excel
saves computed values when a user closes the document
and reuses these values when the user again opens the
spreadsheet while formulas are not evaluated.

Although these problems occur in a small number of cases
and there are “tricks” that can be used to avoid them, such as
making the results of a spreadsheet always affect the visible
space, we would like to encourage spreadsheet designers to
make these optimization techniques configurable and make
their usage optional.

8.4 New Applications: Beyond Calculations

In addition to the extension of existing (primarily business-
oriented) spreadsheets with additional data, our approach
to using software services also opens possibilities for
creating significantly different applications. The input for
spreadsheets can now, for example, be detected by speech
recognizer services, real-time facial expression detectors
[39], or hand gesture detection [27]. The spreadsheet itself
can produce many side effects such as calling Web services,
generating speech output, or sending SMS messages. For
example, by using only a few formulas, we were able to
connect the Flickr service [21] with a simple local Web
camera capture service to automatically upload captured
images on the Web.

AMICO:CALC opens numerous possibilities for the
exploration of heterogeneous open source components that
are typically not used in EUD environments. The key to
enabling novel applications lies in the ability of the AMICO
platform to exploit a huge number of heterogeneous
components and services [37]. When OSS components offer
their functionality through any of the open communication
interfaces, integration with AMICO:CALC is straightfor-
ward and consists of defining service adapters. With our
open source distribution, we also provide adapters for
widely used OSS components (e.g., SOAP, HTTP, and
TCP). To enable the exploitation of their code by end users,
we would like to encourage the OSS developers to include
such stand-alone service-oriented examples with their
distributions.

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 239

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

It is important to note that we see the role of

AMICO:CALC here not as a final product environment

but as an interface that can enable quick “sketching” of

various software service combinations, such as sketching

user interfaces [4]. In other words, our spreadsheets can

enable quick exploration of possibilities of available soft-

ware services and components and serve as an environment

for studying of various what-if scenarios. In this manner,

we used AMICO:CALC in domains such as rapid applica-

tion development of multimodal interfaces, user interaction

with the Semantic Web, and user coordination of devices in

an ambient intelligent environment.

8.5 Toward General Requirements for End-User
Service Computing: Using Other Middlewares
and EUD Environments

Although the proposed framework is based on the exten-

sion of our AMICO middleware, the functions defined in

spreadsheets can easily be adapted and used with other

message-oriented middlewares (e.g., Linda [24] has pretty

much the same primitives, i.e., read and write).
What makes a difference is the type of coordination entities

supported by the middleware. The existing middlewares and

message-oriented systems usually require uniformity of

communication interfaces, which limits the number of

services that can be used but enables easy integration of the

services that already support such interface.
We are also exploring how AMICO and similar message-

oriented service middlewares could be used with other end-

user environments, such as graphical diagram editors used

in environments such as Matlab or EyesWeb [10]. For

example, we used the EyesWeb graphical editor to define

image motion processing, where the system is tracking the

center of mass of the animated human body. Using existing

network sender and receiver primitives of this environ-

ment, we connected the example to the AMICO middle-

ware, so that it can receive the URL to the video that has to

be processed from other AMICO modules and send the

coordinates of the center of the detected figure to AMICO.
We are also exploring how spreadsheets can be used in

combination with higher level scripting languages. Script-

ing languages are usually easier to learn by end-user

developers as they use typeless approaches to achieve a

higher level of programming enabling more rapid applica-

tion development than system programming languages.

Our middleware currently also supports several higher

level scripting languages, including Javascript, Python,

BeanShell, Groovy, Ruby, TCL, Sleep, Haskell, and Prolog.

Our implementation of scripting support is based on the

Java Scripting Project, except for the support for Prolog,

which is based on the JLog project.

8.6 Relation with Conventional Service
Composition Solutions

In the end, it is important to note that our solution is aimed

not as a replacement but as a complement to existing

conventional service composition solutions such as those

described in Section 3.2. We complement these solutions in

two aspects:

. enabling nondevelopers to exploit software services
without programming and the need to learn com-
plex protocols and data structures and

. providing a simple environment where the function-
ality of services can be explored and various service
combinations could be tested in the early stages of
development.

With AMICO:CALC, end users can directly exploit many
available software services without the need to learn a new
language or change their EUD environment. On the other
hand, exploration of the space of service combinations is
important in domains such as the design of interactive
systems, where it may not be clear in the early stages of
development what services are necessary and how the user
will accept them. Building prototypes with conventional
service composition approaches may be expensive and time
consuming. By reducing development efforts and by
making it possible to involve end users in the early stages
of development, our solution can facilitate the exploration
of the space of possible service compositions before the
decision about the final implementation is made.

9 CONCLUSION

We have presented a framework for a spreadsheet-based
composition of heterogeneous software services. The main
contribution of our work is showing how spreadsheets, a
paradigm proven to be highly productive and simple to
learn and use, can be used for complex service composi-
tions. We have described the details of our framework for
spreadsheet-based service composition and discussed the
identified end-user issues based on its use in several
projects and in education.

Providing services directly to end users may also
promote more frequent use of services, possibly changing
the business model from business to business (B2B or
developer to developer) to business to consumer (B2C).
With millions of end-user developers, the number of
potential service consumers is much higher. This shift is
also characteristic in other service industries, opening new
opportunities for the service economy [48].

In the future work, we will continue to address many of
the open issues such as debugging, adding tools for
discovery of services, automatic integration of services
without manual configuring of adapters, and security. As
we have integrated our solutions into existing mainstream
EUD environments, we also plan to reuse other solutions
that work with these environments, such as debuggers [2],
[46], or work with assertions [8]. An interesting research
direction is to explore integrations with other EUD
environments, including visual programming tools. We
also plan to compare our (end-user-oriented) approach with
other (more developer-oriented) service composition and
business process modeling approaches (e.g., BPEL).

ACKNOWLEDGMENTS

This research was partially supported by the European
Commission under contract FP6-027026, project-K-Space.
The authors thank Anton Eliens and Farhad Arbab for

240 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

providing useful feedback on the work described here and

for comments that significantly improved this article.

REFERENCES

[1] R. Abraham and M. Erwig, “Inferring Templates from Spread-
sheets,” Proc. 28th Int’l Conf. Software Eng. (ICSE ’06), pp. 182-191,
2006.

[2] R. Abraham and M. Erwig, “GoalDebug: A Spreadsheet Debugger
for End Users,” Proc. 29th Int’l Conf. Software Eng. (ICSE ’07),
pp. 251-260, 2007.

[3] A. Ambler, “The Formulate Visual Programming Language,”
Dr. Dobb’s J., vol. 24, no. 8, pp. 21-28, 1999.

[4] B. Buxton, Sketching User Experiences: Getting the Design Right and
the Right Design. Morgan Kaufmann, Mar. 2007.

[5] B. Boehm et al., “Cost Models for Future Software Life Cycle
Processes: COCOMO 2.0,” Annals of Software Eng., special volume
on software process and product measurement, pp. 57-94, 1995.

[6] B.A. Nardi, A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, July 1993.

[7] P.S. Brown and J.D. Gould, “An Experimental Study of People
Creating Spreadsheets,” ACM Trans. Information Systems, vol. 5,
no. 3, pp. 258-272, 1987.

[8] M. Burnett et al., “End-User Software Engineering with Assertions
in the Spreadsheet Paradigm,” Proc. 25th Int’l Conf. Software Eng.
(ICSE ’03), pp. 93-103, 2003.

[9] M.M. Burnett and H.J. Gottfried, “Graphical Definitions: Expand-
ing Spreadsheet Languages through Direct Manipulation and
Gestures,” ACM Trans. Computer-Human Interaction, vol. 5, no. 1,
pp. 1-33, 1998.

[10] A. Camurri, M. Ricchetti, and R. Trocca, “EyesWeb—Toward
Gesture and Affect Recognition in Dance/Music Interactive
Systems,” Proc. IEEE Int’l Conf. Multimedia Computing and Systems
(ICMCS ’99), vol. 1, pp. 643-648, http://www.eyesweb.org/,
1999.

[11] S.-K. Chang, Principles on Visual Programming Systems. Prentice
Hall, 1990.

[12] E.H.H. Chi, J. Riedl, P. Barry, and J. Konstan, “Principles for
Information Visualization Spreadsheets,” IEEE Trans. Computer
Graphics and Applications, vol. 18, no. 4, pp. 30-38, 1998.

[13] P. Ciancarini, “Coordination Models and Languages as Software
Integrators,” ACM Computing Surveys, vol. 28, no. 2, pp. 300-302,
1996.

[14] F. Curbera et al., “Unraveling the Web Services Web,” IEEE
Internet Computing, vol. 6, no. 2, pp. 86-93, 2002.

[15] EditGrid Online Spreadsheets Web Page, http://www.editgrid.com/,
2008.

[16] End Resources on End-User Software Engineering, 2008.
[17] Comm. ACM, special issue on end-user development, vol. 47, no. 9,

pp. 31-94, Sept. 2004.
[18] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles,

Patterns, and Practice. Addison-Wesley Professional, June 1999,
ISBN 0-201-30955-6.

[19] F.J. Lerch, M.M. Mantei, and J.R. Olson, “Skilled Financial
Planning: The Cost of Translating Ideas into Action,” Proc. ACM
SIGCHI Conf. Human Factors in Computing Systems: Wings for the
Mind (CHI ’89), pp. 121-126, 1989.

[20] G. Fitzpatrick et al., “Augmenting the Workaday World with
Elvin,” Proc. Sixth European Conf. Computer Supported Cooperative
Work (ECSCW ’99), pp. 431-450, 1999.

[21] Flickr Web Services Site, http://www.flickr.com/services/api/,
2008.

[22] J. Fujima, A. Lunzer, K. Hornbæk, and Y. Tanaka, “Clip, Connect,
Clone: Combining Application Elements to Build Custom Inter-
faces for Information Access,” Proc. 17th Ann. ACM Symp. User
Interface Software and Technology (UIST ’04), pp. 175-184, 2004.

[23] E. Gamma, R. Helm, R. Johnson, and J. Vlisside, Design Patterns:
Elements of Reusable Object-Oriented Software. Adddison-Wesley
Professional, Nov. 1994.

[24] D. Gelernter, “Generative Communication in Linda,” ACM
Trans. Programming Languages and Systems, vol. 7, no. 1,
pp. 80-112, Jan. 1985.

[25] Google Web Spreadsheets Web Site, http://docs.google.com/, 2008.
[26] S. Greenberg and B. Buxton, “Usability Evaluation Considered

Harmful (Some of the Time),” Proc. 26th Ann. ACM SIGCHI Conf.
Human Factors in Computing Systems (CHI ’08), pp. 111-120, 2008.

[27] HandVu Hand Gesture Recognitizer Project Web Site, http://
www.movesinstitute.org/~kolsch/HandVu/HandVu.html, 2008.

[28] M.N. Huhns and M.P. Singh, “Service-Oriented Computing: Key
Concepts and Principles,” IEEE Internet Computing, vol. 9, no. 1,
pp. 75-81, 2005.

[29] iRows Online Spreadsheets Web Page, http://www.irows.com/,
2008.

[30] B. Johanson, A. Fox, and T. Winograd, “The Interactive Work-
spaces Project: Experiences with Ubiquitous Computing Rooms,”
IEEE Pervasive Computing, vol. 1, no. 2, pp. 67-74, Apr. 2002.

[31] E. Kandogan, E. Haber, R. Barrett, A. Cypher, P. Maglio, and
H. Zhao, “A1: End-User Programming for Web-Based System
Administration,” Proc. 18th Ann. ACM Symp. User Interface
Software and Technology (UIST ’05), pp. 211-220, 2005.

[32] S.S. Laurent, Microsoft Excel’s Web Services, http://www.
oreillynet.com/pub/h/1306, 2008.

[33] J.L. Leopold and A.L. Ambler, “Keyboardless Visual Program-
ming Using Voice, Handwriting, and Gesture,” Proc. IEEE Symp.
Visual Languages (VL ’97), p. 28, 1997.

[34] E.M. Maximilien and M.P. Singh, “Toward Autonomic Web
Services Trust and Selection,” Proc. Second Int’l Conf. Service-
Oriented Computing (ICSOC ’04), pp. 212-221, 2004.

[35] B.A. Myers, “Graphical Techniques in a Spreadsheet for Specify-
ing User Interfaces,” Proc. ACM SIGCHI Conf. Human Factors in
Computing Systems (CHI ’91), pp. 243-249, 1991.

[36] NumSum Online Spreadsheets Web Page, http://numsum.com/,
2008.

[37] �Z. Obrenovic and D. Ga�sevi�c, “Open-Source Software: All You Do
Is Put It Together,” IEEE Software, vol. 24, no. 5, pp. 86-95, 2007.

[38] �Z. Obrenovic, D. Ga�sevi�c, and A. Eliëns, “Stimulating Creativity
through Opportunistic Software Development,” IEEE Software,
vol. 25, no. 6, pp. 64-70, Nov./Dec. 2008.

[39] OpenCV Computer Vision Library Project Web Site, http://
opencvlibrary.sourceforge.net/, 2008.

[40] OpenID Web Site, http://openid.net/, 2008.
[41] B. Orriëns, J. Yang, and M.P. Papazoglou, “Model Driven Service

Composition,” Proc. First Int’l Conf. Service-Oriented Computing
(ICSOC), 2003.

[42] G.A. Papadopoulos and F. Arbab, “Coordination Models and
Languages,” Advances in Computing—The Eng. of Large Systems,
M. Zelkowitz, ed., vol. 46, Academic Press, 1998.

[43] M.P. Papazoglou and D. Georgakopoulos, “Service-Oriented
Computing,” Comm. ACM, vol. 46, no. 10, pp. 25-28, 2003.

[44] J.F. Patterson, M. Day, and J. Kucan, “Notification Servers for
Synchronous Groupware,” Proc. ACM Conf. Computer Supported
Cooperative Work (CSCW ’96), pp. 122-129, 1996.

[45] J. Rao, P. Küngas, and M. Matskin, “Composition of Semantic Web
Services Using Linear Logic Theorem Proving,” Information
Systems, vol. 31, nos. 4-5, p. 34, June/July 2006.

[46] J.R. Ruthruff, M. Burnett, and G. Rothermel, “An Empirical Study
of Fault Localization for End-User Programmers,” Proc. 27th Int’l
Conf. Software Eng. (ICSE ’05), pp. 352-361, 2005.

[47] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of
End Users and End User Programmers,” Proc. IEEE Symp. Visual
Languages and Human-Centric Computing (VLHCC ’05), pp. 207-214,
2005.

[48] Comm. ACM, special issue on service sciences, vol. 49, no. 7,
pp. 30-87, July 2006.

[49] N.C. Shu, “Visual Programming: Perspectives and Approaches,”
IBM Systems J., vol. 28, pp. 525-547, 1989.

[50] Simple Spreadsheets Platform Home Page, http://www.simple-
groupware.de/cms/Spreadsheet/Home, 2008.

[51] StrikeIron SOA Express for Excel Web Page, http://
www.strikeiron.com/tools/tools_soaexpress.aspx, 2008.

[52] Sxipper Project Web Site, http://www.sxip.com/sxipper, 2008.
[53] S.H.T. Thompson and M. Tan, “Quantitative and Qualitative

Errors in Spreadsheet Development,” Proc. 30th Hawaii Int’l Conf.
System Sciences (HICSS ’97), p. 149, 1997.

[54] W.K. Edwards, “Putting Computing in Context: An Infrastructure
to Support Extensible Context-Enhanced Collaborative Applica-
tions,” ACM Trans. Computer-Human Interaction, vol. 12, no. 4,
pp. 446-474, 2005.

[55] G. Wang and A. Ambler, “Solving Display-Based Problems,” Proc.
IEEE Symp. Visual Languages (VL ’96), p. 122, 1996.

[56] wikiCalc Home Page, http://www.softwaregarden.com/products/
wikicalc, 2008.

OBRENOVI�C AND GA�SEVI�C: END-USER SERVICE COMPUTING: SPREADSHEETS AS A SERVICE COMPOSITION TOOL 241

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

[57] N. Wilde and C. Lewis, “Spreadsheet-Based Interactive Graphics:
From Prototype to Tool,” Proc. ACM SIGCHI Conf. Human Factors
in Computing Systems (CHI ’90), pp. 153-160, 1990.

[58] Workflow Patterns Web Portal, http://www.workflowpatterns.
com/, 2008.

[59] J. Yang, B. Orriëns, and M.P. Papazoglou, “A Framework for
Business Rule Driven Service Composition,” Proc. Fourth Int’l
Workshop Conceptual Modeling Approaches for E-business Dealing
with Business Volatility, 2003.

[60] Y. Le Blevec, C. Ghedira, D. Benslimane, and X. Delatte, “Service-
Oriented Computing: Bringing Business Systems to the Web,”
IT Professional, vol. 9, no. 3, pp. 19-24, 2007.

[61] L.J. Zhang, S. Ericksen, and J. Roy, “A Web 2.0 Tune-Up,”
IT Professional, vol. 9, no. 3, p. 9, May/June 2007.

[62] Zoho Online Spreadsheets Web Page, http://sheet.zoho.com/, 2008.

�Zeljko Obrenovi�c received the PhD degree in
computer science from the University of
Belgrade. He is an assistant professor with
the User Centered Engineering Group, Depart-
ment of Industrial Design, Technische Univer-
siteit Eindhoven (TU/e), The Netherlands. His
research interests include human-computer
interaction and software engineering. The work
presented in the paper was realized during his
work at CWI, Amsterdam.

Dragan Ga�sevi�c received the BS, MSc, and
PhD degrees in computer science from the
University of Belgrade. He is an assistant
professor and ingenuity new faculty in the School
of Computing and Information Systems, Atha-
basca University, Athabasca, Alberta, Canada.
His research interests include the Semantic
Web, model-driven software engineering, knowl-
edge management, service-oriented architec-
tures, and learning technologies.

242 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 4, OCTOBER-DECEMBER 2008

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 6, 2009 at 10:22 from IEEE Xplore. Restrictions apply.

